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Free and forced vibration analysis is presented for Reissner}Mindlin plates with four free
edges resting on a Pasternak-type elastic foundation. The formulations are based on the
Reissner}Mindlin plate theory, considering the "rst order shear deformation e!ect and
including the plate}foundation interaction and thermal e!ects. A new set of admissible
functions, which satisfy both geometrical and natural boundary conditions, are developed
for the free vibration analysis of moderately thick plates with four free edges. The
Rayleigh}Ritz Method is employed in conjunction with this set of admissible functions to
determine the vibration behaviors. Then on this basis, the modal superposition approach is
used in conjunction with Mindlin}Goodman procedure to determine the dynamic response
of free edge Reissner}Mindlin plates exposed to thermomechanical loading. The mechanical
loads consist of transverse partially distributed impulsive loads and in-plane edge loads
while the temperature "eld is assumed to exhibit a linear variation through the thickness of
the plate. The numerical illustrations concern moderately thick plates with four free edges
resting on Pasternak-type elastic foundations with the Winkler elastic foundations being
a limiting case. E!ects of foundation sti!ness, transverse shear deformation, plate aspect
ratio, shape and duration of impulsive load, loaded area, and initial membrane stress as well
as thermal bending stress on the dynamic response of Reissner}Mindlin plates are studied.
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1. INTRODUCTION

Dynamic response of simply supported, moderately thick rectangular plates under
transverse partially distributed impulsive loads combined with in-plane edge loads and
temperature "eld and resting on a Pasternak-type elastic foundation was the subject of
a recent investigation [1]. The analysis was based on the Reissner}Mindlin "rst order shear
deformation plate theory (FSDPT). Dynamic response was determined by using both the
modal superposition approach (MSA) and state variable approach (SVA). Such solutions
may "nd important applications in stress analysis and design of concrete pavements of
air"elds.

Many publications have appeared in the literature on the free or forced vibration of
isotropic and composite laminated thick plates. The dynamic response of plates are
presented mainly for a few edge boundary conditions, such as those simply supported at
four edges (Navier-type solutions) or at two parallel edges (Levy-type solutions). For other
type of boundary conditions, only numerical results can be found [2}5], and most of them
are for the free vibration analysis. The Rayleigh}Ritz method has been frequently applied
and it should select appropriate admissible functions (e.g. beam vibration mode shapes [6])
representing the de#ection of the plate under consideration. However, as mentioned by
0022-460X/01/270299#22 $35.00/0 ( 2001 Academic Press
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Bassily [7] and Dawe [8], this kind of admissible function for the plate involving one or
more free edges is less satisfactory in free vibration analysis. Consequently, some modi"ed
functions, e.g. degenerated beam functions [9], orthogonal polynomials [10, 11], pb-2 type
polynomial function [12], are introduced to overcome this di$culty, but they do not satisfy
natural boundary conditions and thus show slow convergence. Moreover, Gorman [13]
and Gorman and Ding [14] employed the superposition method to obtain accurate free
vibration solutions for completely free rectangular thin or thick plates. Shen [15, 16] gave
the analytical solutions for non-linear bending of Reissner}Mindlin plates with four free
edges subjected to transverse partially distributed loads combined with temperature "eld or
in-plane loads and resting on elastic foundations.

The present study extends the previous work [1] to the case of moderately thick
rectangular plates with four free edges resting on a Pasternak-type elastic foundation.
A new set of admissible functions, which satisfy both geometrical and natural boundary
conditions, are developed for the free vibration analysis of moderately thick plates with four
free edges. The Rayleigh}Ritz Method is employed in conjunction with this set of admissible
functions to determine the vibration behavior. Then on this basis, the modal superposition
approach in conjunction with Mindlin}Goodman procedure [17, 18], is used to determine
the dynamic response of free edge Reissner}Mindlin plates exposed to thermomechanical
loading. The mechanical loads consist of tranverse partially distributed impulsive loads and
in-plane edge loads while the temperature "eld is assumed to exhibit a linear variation
through the thickness of the plate. The material properties are assumed to be independent of
temperature. The formulations are based on Reissner}Mindlin "rst order shear
deformation plate theory and include the plate}foundation interaction and thermal e!ects.
Numerical examples are presented that relate to the dynamic behaviors of free edge
moderately thick plates resting on Pasternak-type elastic foundations, from which results
for Winkler foundations are obtained as a limiting case. Static bending is treated as
a degenerated problem.

2. GOVERNING EQUATIONS AND THEIR DIMENSIONLESS FORMS

Consider a moderately thick rectangular plate of length a, width b, and thickness h, which
rests on a Pasternak-type elastic foundation. The four edges of the plate are all free.
A Cartesian co-ordinate system (X, >, Z) is located at the middle plane of the plate, where
X is longitudinal and Z is perpendicular to the plate. The origin point is located at the
center of the plate, as shown in Figure 1. The plate is exposed to a stationary temperature
"eld ¹(X, >, Z) and transverse impulsive load q over a central area a

1
]b

1
combined with

in-plane edge loads N
X

in the X direction and N
Y
in the> direction. As is customary [15, 16,

19}21], the foundation is assumed attached to the plate and separation does not arise. The
load}displacement relationship of the foundation is assumed to be p"KM

1
=M !KM

2
+ 2=M ,

where=M is the plate de#ection, p is the force per unit area, KM
1

is the Winkler foundation
sti!ness, KM

2
is a constant showing the e!ect of the shear interactions of the vertical elements,

+ 2 is the Laplace operator in X and >. W1
X

and W1
Y

are the mid-plane rotations of the
normals about the >- and X-axis respectively, t6 is the time and X is the frequency.

It is postulated that the temperature "eld ¹(X, >, Z) exhibits a linear variation through
the plate thickness, i.e.,

¹(X, >, Z)"¹
0 A1#C

Z

hB , (1)

in which ¹
0

and C denote the temperature amplitude and gradient respectively.



Figure 1. A Reissner}Mindlin plate subjected to a transverse partially distributed impulsive load.
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The thermal moments caused by the temperature "eld ¹(X, >, Z ) are de"ned by

MM T"
Ea

1!l P
h@2

~h@2

Z¹(X, >, Z) dZ, (2)

where a is the thermal expansion coe$cient of a plate, E is Young's modulus and l is the
Poisson ratio.

The deduction of the governing equations associated with Reissner}Mindlin "rst order
shear deformation plate theory, and including the plate}foundation interaction and thermal
e!ects, follows the same pattern as in the case of its static counterpart [15], so that the
motion equations can be written as
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where
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in which

D"

Eh3

12(1!l2)
(I

1
, I

3
)"P

h@2

~h@2

o(1, Z2 ) dZ. (7)

D is #exural rigidity, G is shear modulus, and o is the mass density of the plate. Also, i2 is
the shear factor, which accounts for the non-uniformity of the shear strain distribution
through the plate thickness. For Reissner plate theory i2"5/6 while for Mindlin plate
theory i2"n2/12.

The stress resultants are
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LWM
X
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QM
X
"i2GhA

L=M
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QM
Y
"i2GhA

L=M
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#WM
YB. (12)

If all four edges of the plate are free, the boundary conditions are

X"Ga/2:

MM
X
"0, MM

XY
"0, QM

X
"0. (13a)

>"Gb/2:

MM
Y
"0, MM

XY
"0, QM

Y
"0. (13b)

Because of equations (1) and (2), it is noted that the temperature does not vary in X and
>, then thermal moment MM T is a constant, so that the boundary conditions of equation (13)
are non-homogeneous, but in equations (4) and (5) MM T

,x
"MM T

,y
"0.

Introducing dimensionless quantities (in which the alternative forms k
1

and k
2

are not
needed until the numerical examples are considered),
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Equations (3)} (5) may then be written in dimensionless form as
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and the dimensionless forms of stress resultants become
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The boundary conditions of equation (13) become

x"Gn/2:
M

x
"0, M

xy
"0, Q

x
"0. (24a)

y"Gn/2:
M

y
"0, M

xy
"0, Q

y
"0 (24b)
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and zero initial conditions are assumed, i.e.

(=, W
x
, W

y
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t/0

"0 A
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LW

x
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,
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y
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3. FREE VIBRATION ANALYSIS

3.1. ENERGY FUNCTIONAL

The strain energy for initially stressed Reissener}Mindlin plates may be written in the
dimensionless form as [19]
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The maximum kinetic energy for free harmonic vibration is
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and the strain energy owing to the Pasternak foundation model is
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then the energy functional is

P";!¹#<. (29)

3.2. ADMISSIBLE SOLUTION

Firstly, we assume the modal shape functions as
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in which, A
00

, A
m0

, etc. are unknown coe$cients. Because the applied loads in section 4 are
symmetric, only the double symmetric modals will make contributions to the dynamic
response of the plate. For this reason, the modal shape functions selected here are applicable
to cases of double symmetry.

Then substituting equations (30)}(32) into equations (16) and (17), considering the
boundary conditions (24) and ignoring the thermal bending and the dynamic inertia, we can
set-up the relations among the unknown coe$cients. They are

C
=
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xII
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w*2
w*x2D aT2 , (34a)

C
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III
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yIII
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3
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=
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W
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W
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w*4

w*x4
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in which the row-submatrix of w*2 , w*x2, etc., are de"ned in Appendix A.
Using the Rayleigh}Ritz method and minimizing the total energy functional of equation

(29) with respect to the unknown coe$cients leads to

(D#j
x
E!u2F )a"0, (35)

where a is the column matrix of all unknown coe$cients (generalized displacements), D is
the elastic sti!ness matrix, E the initial stress sti!ness matrix and F the consistent mass
matrix. The details of these matrices are given in Appendix B. If the truncated orders of the
admissible functions m"n"r!1, the size of these matrices is r2]r2. Because not all of
the elements of a equal to zero, from equation (35), we have

det(D#j
x
E!u2F)"0. (36)

The resultant standard eigenequation can then be easily solved for determining the
m order natural frequencies u

m
and mode shape functions=

m
(x, y), W

xm
(x, y) and W

ym
(x, y),

which satisfy both geometrical and natural boundary conditions, and will be used in the
next section for dynamic analysis.
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4. FORCED VIBRATION ANALYSIS

Because the boundary condition of equation (24) is non-homogeneous, we assume that
the solution of equations (15)}(17) is comprised of two parts as [17, 18]

=(x, y, t)"=I (x, y, t)#=K (x, y), (37a)
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Substituting solution (38) into equations (15)} (17) and boundary condition (24), the
coe$cients a

11
, a

12
, etc. can be determined with details given in Appendix C.

Then solutions=I (x, y), W3
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with the homogeneous boundary conditions
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and the initial condition
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in equation (39a) j3
q
is given in detail in Appendix D.

The modal superposition approach (MSA) is now used to solve equation (39) and we
assume

=I (x, y, t)"
=
+
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=
m
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m
(t), (42a)
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where=
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(x, y) come from equation (35) and ¹

m
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co-ordinate for the mth modal and u
m

is the mth frequency of the plate. Following the same
procedure of reference [1], we can obtain
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where Q
m
(t), K

m
, I

m
are given in detail in Appendix D. Note that the Mindlin}Goodman

orthogonality condition, in the present case, can be written as
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Substituting equation (43) into equation (42) and adding equation (38), =(x, y, t),
W

x
(x, y, t ) and W

y
(x, y, t) can be obtained. If we degenerate this problem into a static one,

¹
m
(t), Q

m
(t) become independent on time, then we can seek the static solution. Taking the

same procedure as its dynamic counterpart, we can obtain

¹
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Q
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m
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. (45)

Using the same steps, the displacement "elds can be expressed explicitly.

5. NUMERICAL EXAMPLES AND COMMENTS

5.1. CONVERGENCE AND COMPARISON STUDIES

To demonstrate the convergence of the presented method, a study of free or forced
vibration for a square plate with four free edges has been carried out by setting l"0)15,
i2"n2/12 and o"2500 kg/m3. The plate is supported by a Pasternak-type elastic
foundation with (k

1
, k

2
)"(2)0, 0)4), but no edge compression is applied. For free vibration

problem, no thermal bending stress is included, and the symmetric}symmetric (SS)

dimensionless frequency u6 "Xb2/n2Joh/D is given in Table 1 for various width-to-
thickness ratio b/h"5, 10 and 20. It is mentioned that the "rst frequencies in Table 1 are the
rigid-body translations on elastic foundations. The results indicate that the "rst "ve SS
frequencies converge very accurately by taking m and n up to 5. Accordingly, in the
following studies, m and n are taken as 5. For a dynamic problem, initial thermal bending
stress is included (¹

0
"303C, a"1)0]10~5/3C, C"1)0), dimensionless dynamic

de#ection (=K "=M Eah/q
0
b3 ) and bending moment (MK

X
"MM

X
a2/q

0
b2h2) as function of

time [tL"(tN /b) JE/o] are listed in Table 2 for a square plate with b/h"10 subjected to



TABLE 1

Convergence study for the symmetric}symmetric frequency parameter Xb2/n2 Joh/D of
square plates; l"0)15, a/b"1, and (k

1
, k

2
)"(2)0, 0)4)

Doubly symmetric modes
Determinant

m n size 1 2 3 4 5

1 1 4 1)4142 2)7038 2)8753 6)5002 *

3 3 16 1)4142 2)6739 2)8099 5)5620 8)6598
b/h"5 4 4 25 2)6683 2)8063 5)6470 8)3287

5 5 36 2)6678 2)8059 5)6453 8)3156
6 6 49 2)6678 2)8059 5)6451 8)3146

1 1 4 1)4142 2)8830 3)0799 7)5266 *

3 3 16 1)4142 2)8556 3)0104 6)6793 11)0073
b/h"10 4 4 25 2)8535 3)0088 6)6680 10)7577

5 5 36 2)8533 3)0086 6)6673 10)7476
6 6 49 2)8533 3)0086 6)6673 10)7468

1 1 4 1)4142 2)9382 3)1440 7)8917 *

3 3 16 1)4142 2)9128 3)0743 7)0793 12)1290
b/h"20 4 4 25 2)9117 3)0734 7)0684 11)9587

5 5 36 2)9116 3)0733 7)0678 11)9529
6 6 49 2)9116 3)0733 7)0678 11)9526
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a suddenly applied central patch load (a
1
/a"b

1
/b"0)5, q

0
"2)0]103 kN/m2,

E"35 GN/m2). The results indicate that the convergence is obtained by taking numbers of
modes up to 14, which is employed in the following dynamic studies.

As part of the validation of the present method, the central de#ections and bending stress
of a free edge moderately thick square plate, subjected to a static transverse load over
a central patch area alone and resting on a Winkler elastic foundation, are compared in
Figure 2 with "nite-di!erence method results given by Henwood et al. [22] and the
superposition method solutions given by Shi et al. [23], using their computing data, i.e.,
E"300 MN/m2, l"0)35, KM

1
"50 MN/m2, a"b"1)0 m, h"0)4 m, a

1
"b

1
"0)5 m,

and q
0
"1)0N/m2. They show that, in the static bending case, the de#ection=M along the

X-axis is in good agreement with the comparison results, whereas the bending stress
p6
X

along the X-axis is lower than its counterparts, when 0)2(X(0)8m.
In addition, the dimensionless frequencies for completely free square and rectangular

thick plates (that means without any elastic foundation) are compared in Table 3 with
Rayleigh}Ritz solutions of Frederiksen [11] (taking orthogonal polynomials as admissive
functions) and Hanna [2] (taking polynomials as admissive functions) and superposition
method solution of Gorman [14]. Rigid-body translations are not included. They show
that, in the free vibration case, the present results agree well with existing solutions.

5.2. PARAMETRIC STUDIES

A parametric study intended to supply information on the dynamic behaviors of
a moderately thick plate with four free edges subjected to thermomechanical loading and
resting on an elastic foundation was undertaken. The typical results are shown in Figures 3}9.

It should be appreciated that in all these "gures (tN /b)JE/o,=M Eah/q
0
b3, MM

x
a2/q

0
b2h2 mean



TABLE 2

Convergence study for the dimensionless dynamic de-ection (=K "=M Eah/q
0
b3) and dynamic bending (MK

X
"MM

X
a2/q

0
b2h2) moment of square

plates; l"0)15, a/b"1, b/h"10, (k
1
, k

2
)"(2)0, 0)4), a

1
/a"b

1
/b"0)5, q

0
"2)0]103 kN/m2, ¹

0
"303C, a"1)0]10~5/3C, C"1)0

No. tL"2 tL"4 tL"6 tL"8 tL"10 tL"12
of
modes =K MK

X
=K MK

X
=K MK

X
=K MK

X
=K MK

X
=K MK

X

6 2)1421 2)8246 3)9263 3)6340 3)6050 1)6101 3)7712 1)5715 4)4510 3)1225 3)2592 3)2836
8 2)1502 2)8733 3)9340 3)6801 3)6071 1)6228 3)7797 1)6223 4)4582 3)1658 3)2614 3)2970

10 2)1467 2)8430 3)9307 3)6520 3)6042 1)5982 3)7773 1)6022 4)4565 3)1509 3)2603 3)2878
12 2)1337 2)7315 3)9202 3)5620 3)5974 1)5395 3)7746 1)5784 4)4574 3)1590 3)2639 3)3185
14 2)1269 2)6674 3)9136 3)4996 3)5971 1)5358 3)7676 1)5127 4)4509 3)0983 3)2635 3)3147
16 2)1271 2)6725 3)9140 3)5042 3)5973 1)5376 3)7678 1)5156 4)4511 3)1000 3)2635 3)3152
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Figure 2. The comparison of static de#ection and #exural stress along the X direction: (a) de#ection; (b) #exural
stress: **, present; j, Henwood et al. (1982); ) ) ) ) ) , Shi et al. (1994).

Figure 3. E!ect of the foundation sti!ness on dynamic behaviors of a moderately thick plate: (a) central
de#ection versus time; (b) bending moment versus time (b"1)0, b/h"10)0, N

X
"0, a

1
/a"b

1
/b"0)5):**, (k

1
,

k
2
)"(1)0, 0)0); - - - - - , (k

1
, k

2
)"(2)0, 0)0); ) ) ) ) ) ) , (k

1
, k

2
)"(2)0, 0)4); } ) } ) } ) }, (k

1
, k

2
)"(2)0, 0)8).

Figure 4. E!ect of pulse shape and pulse duration on dynamic behaviors of a moderately thick plate: (a) central
de#ection versus time; (b) bending moment versus time (b"1)0, b/h"10)0, (k

1
, k

2
)"(2)0, 0)4), N

X
"0,

a
1
/a"b

1
/b"0)5): 1, Load Case 1; 2, Load Case 2; 3, Load Case 3; 4, Load Case 4; 5, Load Case 5. **,

(tN
0
/b) JE/o"5)0; ) ) ) ) ) , (tN

0
/b) JE/o"8)0.
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the dimensionless forms of, respectively, time, central de#ection and bending moment of the
plate, i.e., at the point (X, >)"(0, 0). For all of the examples, E"35GN/m2, l"0)15,
o"2500 kg/m3, and the transverse shear correction factor was considered to be
i2"n2/12. The impulsive pressure q(X, >, tN )"q

0
F(tN ) f (X, >) is applied on the top surface



TABLE 3

Comparisons of frequencies of completely free plates

Doubly symmetric modes
Dimensionless
forms b/h a/b SS-1 SS-2 SS-3

FEM 6)2515 13)998 30)636
Xa2Jo/E/h l"0)3 6)67 Frederiksen [11] 1)5 FSDPT 6)2513 13)997 30)632

i2"n2/12 HSDPT 6)2473 13)976 30)499

Present 1)5 FSDPT 6)2515 13)9879 30)5603

1 FSDPT 5)732 7)057 16)845
l"0)15 Hanna [2] HSDPT 5)736 7)065 16)896

Xa2 Jo/E/h i2"n2/12 10 2 FSDPT 6)430 25)665 34)012
HSDPT 6)432 25)691 34)073

1 FSDPT 5)7355 7)0673 16)9213
Present 2 FSDPT 6)4350 25)6866 34)0863

Gorman [14] 1 SM 18)59 23)45 54)90
Xa2 Joh/D l"0)333 10 0)5 5)257 21)10 27)93

i2"0)8601 Present 1 RRM 18)5996 23)4966 55)4550
0)5 5)2623 21)1271 28)1052
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Figure 5. E!ect of loaded area on dynamic behaviors of a moderately thick plate: (a) central de#ection versus
time; (b) bending moment versus time (b"1)0, b/h"10)0, (k

1
, k

2
)"(2)0, 0)4), N

X
"0): 1, a

1
/a"b

1
/b"0)3; 2,

a
1
/a"b

1
/b"0)5; 3, a

1
/a"b

1
/b"0)7.

Figure 6. E!ect of initial membrane stress on dynamic behaviors of a moderately thick plate: (a) central
de#ection versus time; (b) bending moment versus time (b"1)0, b/h"10)0, (k

1
, k

2
)"(2)0, 0)4), a

1
/a"b

1
/b"0)5):

1, s"0)0, N
X
/(N

X
)
#3
"0)0; 2, s"0)0, N

X
/(N

X
)
#3
"!0)25; 3, s"0)0, N

X
/(N

X
)
#3
"0)25; 4, s"1)0,

N
X
/(N

X
)
#3
"!0)25.

Figure 7. E!ect of the initial thermal bending stress on dynamic behaviors of a moderately thick plate: (a)
central de#ection versus time; (b) bending moment versus time (b"1)0, b/h"10)0, ¹

0
"303C, (k

1
, k

2
)"(2)0, 0)4),

N
X
"0, a

1
/a"b

1
/b"0)5): 1, C"3)0; 2, C"1)0; 3, C"0)0; 4, C"!1)0; 5, C"!3)0.
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of the plate, in which q
0

is the maximum amplitude, f (X, >) is a unit function in space
domain and F(tN ) is a unit function in time domain which can be any one of the types listed in
Table 4.



Figure 8. E!ect of the plate width-to-thickness ratio on dynamic behaviors of a moderately thick plate: (a)
central de#ection versus time; (b) bending moment versus time (b"1)0, (k

1
, k

2
)"(2)0, 0)4), N

X
"0,

a
1
/a"b

1
/b"0)5): 1, b/h"15)0; 2, b/h"10)0; 3, b/h"5)0.

Figure 9. E!ect of the plate aspect ratio on dynamic behaviors of a moderately thick plate: (a) central de#ection
versus time; (b) bending moment versus time (b/h"10)0, (k

1
, k

2
)"(2)0, 0)4), N

X
"0, a

1
/a"b

1
/b"0)5): 1,

b"0)75; 2, b"1)00; 3, b"1)25.
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Figure 3 shows central de#ection and bending moment as functions of time for a square
plate subjected to a suddenly applied central patch load and either resting on
Pasternak-type or Winkler elastic foundations. The sti!nesses are (k

1
, k

2
)"(2)0, 0)8) and

(k
1
, k

2
)"(2)0, 0)4) for Pasternak-type elastic foundations and (k

1
, k

2
)"(2)0, 0)0) and

(k
1
, k

2
)"(1)0, 0)0) for Winkler elastic foundations. It can be seen that the foundation

sti!ness has a signi"cant e!ect on the dynamic response of the plate.
Figure 4 shows the e!ect of the pulse shape and duration on the dynamic response of

a thick square plate under the loading condition of cases 1}5, i.e., sudden loads, step loads,
triangular loads, sine loads and exponential loads in Table 4, when the plate is supported by
a Pasternak-type elastic foundation. Here (tN

0
/b) JE/o("5)0 and 8)0) indicates pulse

duration.
Figure 5 shows the e!ect of the loaded area parameter (a

1
/a"b

1
/b"0)3, 0)5, and 0)7) on

the dynamic response of a thick square plate subjected to a suddenly applied load and
resting on a Pasternak-type elastic foundation. As expected, these results show that the
central de#ections and bending moments are decreased by decreasing the loaded area
parameter.

Figure 6 shows the e!ect of initial membrane stress (compressive or tensile) on the
dynamic response of a thick square plate subjected to a suddenly applied central patch load



TABLE 4

¹he various kinds of pulse shapes of transverse impulsive loads

Case 1 2 3 4 5

Sudden loads Step loads Trianguar
loads

Sine loads Exponential
loads

F(tN )"1 F(tN )"G
1,

0,

tN)tN
0

tN'tN
0

F(tN )"G
1! t

6

t
N
0

0,
,

tN)tN
0

t6'tN
0

F(tN )"G
sin nt6

t
N
0

0,
,

tN)tN
0

t6'tN
0

F(tN )"e~at6
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and resting on a Pasternak-type elastic foundation. Clearly, the in-plane loads have
considerable e!ects on the dynamic behavior of the plate, but the biaxial load ratio has less
e!ect.

Figure 7 shows the e!ect of initial thermal bending stress (q
0
"2)0]103kN/m2,

E"35GN/m2, ¹
0
"303C, a"1)0]10~5/3C, C"0)0,$1)0 and $3)0) on the dynamic

response of a thick square plate subjected to a suddenly applied central patch load and
resting on a Pasternak-type elastic foundation.

Numerical values for some points on the curves analogous to the results of Figures 6 and
7 are listed in Table 5. These numerical results are useful for numerical benchmarking by
others.

Figures 8 and 9 show, respectively, plate width-to-thickness ratio b/h ("15)0, 10)0 and
5)0) and plate aspect ratio b ("0)75, 1)0 and 1)25) on the dynamic response of a rectangular
plate subjected to a suddenly applied central patch load and resting on a Pasternak-type
elastic foundation. It can be seen that the transverse shear deformation has a signi"cant
e!ect on the dynamic behavior. Also, it can be seen that the central de#ections and bending
moments are increased, but the frequency is decreased by increasing the plate aspect ratio.

In Figures 4}9, the Pasternak-type elastic foundation sti!ness is characterized by
(k

1
, k

2
)"(2)0, 0)4); in Figures 3 and 5}9, the plate is subjected to a suddenly applied central

patch load; in Figures 3 and 4 and 6}9, the loaded area parameter a
1
/a"b

1
/b"0)5; in

Figures 3}5 and 7}9, biaxial load ratio s"0)0 and the initial compressive stress N
x
"0; in

Figures 3}6 and 8 and 9, the temperature gradient C"0)0; in Figures 3}7 and 9, the plate
width-to-thickness ratio b/h"10)0; and in Figures 3}8, the plate aspect ratio b"1)0.

6. CONCLUSIONS

Free and forced vibration analysis for a Reissner}Mindlin plate with four free edges
resting on a Pasternak-type elastic foundation has been presented. A new set of admissible
functions, which satisfy both geometrical and natural boundary conditions, is developed for
the free vibration analysis of moderately thick plates with four free edges. On this basis, the
modal superposition approach is used in conjunction with Mindlin}Goodman procedure



TABLE 5

¹he dimensionless dynamic de-ection (=K "=M Eah/q
0
b3) and dynamic bending moment

(MK
X
"MM

X
a2/q

0
b2h2) at di+erent times (tL"(tN /b) JE/o) of square plates; l"0)15, a/b"1,

b/h"10, (k
1
, k

2
)"(2)0, 0)4), a

1
/a"b

1
/b"0)5, q

0
"2)0]103 kN/m2, ¹

0
"303C,

a"1)0]10~5/3C

Initially stressed tL 2 4 6 8 10 12 14

N
X
/(N

X
)
cr
"0 =K 1)4266 3)0003 3)0633 3)3105 3)5822 2)4291 0)4055

MK
X

1)5781 2)0846 0)6180 0)6529 1)6199 1)8385 0)3109
N

X
/(N

X
)
cr
"!0)25 =K 1)4550 3)1921 3)4012 3)2578 3)3371 2)7614 0)8796

MK
X

1)6323 2)5165 1)4949 0)6080 0)9750 2)5918 1)6374
N

X
/(N

X
)
cr
"0)25 =K 1)3987 2)8474 2)9084 3)4745 3)5680 1)9965 0)5343

MK
X

1)5189 1)7268 0)1840 1)0397 1)6944 0)7610 0)5410
N

X
/(N

X
)
cr

"N
Y
/(N

X
)
cr
"0)25 =K 1)4804 3)3553 3)6740 3)1620 3)1408 3)1248 1)3001

MK
X

1)6662 2)5204 1)5447 0)4512 1)0103 2)9099 1)5053

Initially heated tL 2 4 6 8 10 12 14

C"1)0 =K 2)1274 3)9140 3)5974 3)7678 4)4511 3)2635 0)8406
MK

X
2)6725 3)5042 1)5397 1)5157 3)1001 3)3152 1)2267

C"!1)0 =K 0)7259 2)0865 2)5292 2)8531 2)7133 1)5946 !0)0296
MK

X
0)4837 0)6650 !0)3038 !0)2098 0)1396 0)3617 !0)6049
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to determine the dynamic response of free edge Reissner}Mindlin plates exposed to
thermomechanical loading. The static bending problem is treated as a limiting case.
A number of issues related to static bending and free vibration ofm free edge moderately thick
plates with or without elastic foundations have been examined.

Some numerical results are given for the "rst time and can serve as a benchmark for
further investigations. A parametric study of free edge moderately thick plates resting on
Winkler or Pasternak-type elastic foundations has been carried out. The results presented
herein con"rm that the characteristics of dynamic behavior are signi"cantly in#uenced by
foundation sti!ness, shape and duration of impulsive load, loaded area, transverse shear
deformation, plate aspect ratio as well as initial membrane stress.
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APPENDIX A

In equation (34),

a1"[A
00

], a2"[A
10
2A

m0
], a3"[A

01
2A

0n
], a4"[A

11
2A

mn
],

w*1 "[1], w*2 "[w
10
2w

m0
], w*3 "[w

01
2w

0n
], w*4 "[w

11
2w

mn
],

w*x1"[0], w*x2"[t
x10

2t
xm0

], w*x3"[202], w*x4"[t
x11

2t
xmn

],

w*y1"[0], w*y2"[202], w*y3"[t
y01

2t
y0n

], w*y4"[t
y11

2t
ymn

], (A1)

where

w
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g
m
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and

g
m
"4m2c#1; g

n
"4b2n2c#1; g

mn
"4m2c#4b2n2c#1, (A3)

in which (m, n"1, 2,2).

APPENDIX B

In equation (35), the elements of a, D, E, F are given by

a"[a
1

a
2

a
3

a
4
]T,
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D
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D
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D
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D
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D
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D
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,
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E"
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, (B1)

where the row sub-matrix a
m
, which are given in equation (A1), contain, in the appropriate

order, the corresponding unknown coe$cients. The D
mn

, E
mn

and F
mn

are, respectively, the
elastic sti!ness, the initial stress sti!ness and the consistent mass sub-matrix, and their
elements are given as

(D
mn

)
ij
"P

n@2

~n@2 P
n@2

~n@2 C
L(t*

xm
)
i

Lx

L(t*
xn

)
j

Lx
#b2

L(t*
ym

)
i

Ly

L(t*
yn
)
j

Ly

#lbA
)(t*

xm
)
i

Lx

L(t*
yn

)
j

Ly
#

L(t*
ym

)
i

Ly

L(t*
xn

)
j

Lx B

#l
1Ab

L(t*
xm

)
i

Ly
#

L(t*
ym

)
i

Lx BAb
L(t*

xn
)
j

Ly
#

L(t*
yn
)
j

Lx B

#

1

c A(t*
xm

)
i
#

L(w*
m
)
i

Lx B At*
xnj

#

L(w*
n
)
j

Lx B

#

1

c A(t*
ym

)
i
#b

L(w*
m
)
i

Ly BA(t*
yn

)
j
#b

L(w*
n
)
j

Ly B#K
1
(w*

m
)
i
(w*

n
)
j

#K
2A

L(w*
m
)
i

Lx

L(w*
n
)
j

Lx
#b2

L(w*
m
)
i

Ly

L(w*
n
)
j

Ly BD dxdy,

(E
mn

)
ij
"P

n@2

~n@2 P
n@2

~n@2 C
L(w*

m
)
i

Lx

L(w*
n
)
j

Lx
#sb2

L(w*
m
)
i

Ly

L(w*
n
)
j

Ly Ddx dy,

(F
mn

)
ij
"P

n@2

~n@2 P
n@2

~n@2
[h2(w*

m
)
i
(w*

n
)
j
#(t*

xm
)
i
(t*

xn
)
j
#(t*

ym
)
i
(t*

yn
)
j
] dxdy, (B2)

in which m, n"1,2, 4; and the i, j is the index of the sub-matrices of w*
m
, w*

xm
and w*

ym
.

Note that equations (B2) and (D2) can be expressed in explicit forms as a set of long
equations but, for the sake of brevity, the detailed expression are not shown.
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In equation (39),

a
13
"!

l
4(1#l)

S
11

S
33

,

S
11
"96cb6j

y
#4b4[24c (j

x
#j

y
)#6j

y
#c(48K

2
!n2K

1
)]

#b2[24(1#4c)j
x
#48(1#c)K

2
!(1#8c)n2K

1
]!(1#4c)n2K

1
,

S
33
"24b4(j

x
#j

y
)#24b2(1#b2)K

2
!(1#b4)n2K

1
,

a
11
"

(1#4c)(l#b2)

lh
1

a
13

, a
12
"

(1#4cb2)(1#lb2)

lb2h
1

a
13

,

a
14
"!

2b2

lh
1

a
13
!

1

2(1#l)
, a

15
"!

2

lb2h
1

a
13
!

1

2b2(1#l)
,

a
21
"

2(l#b2)

lh
1

a
13

, a
23
"

2

h
1

a
13

,

a
24
"

4b2

lh
1

a
13
#

1

(1#l)
, a

32
"

2(1#lb2)

lbh
1

a
13

,

a
33
"

2b
h
1

a
13

, a
15
"!

2

lb2h
1

a
13

!

1

2b2(1#l)
,

h
1
"1#4c#4cb2 . (C1)

APPENDIX D

In equation (40),
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and in equation (43)
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